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Chapter 6: 
File Processing



2Copyright 2006 by Pearson Education

Lecture outline

� line-based file processing using Scanner s

� processing a file line by line

� mixing line-based and token-based file processing

� searching for a particular line record in a file

� graphically displaying data from a file

� complex file input

� mixing nextLine and token-based methods
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LineLine--based file processingbased file processing

reading: 6.3
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Line-by-line processing
� A Scanner object has the following methods:

� The Scanner 's nextLine method reads a line of input.

� It consumes from the input cursor's position to the next \n .

Scanner input = new Scanner(new File(" <file name>"));
while ( input.hasNextLine() ) {

String line = input.nextLine() ;

<process this line>;

}

returns true if there are any more lines of input 

to read (always true for console input)

hasNextLine()

returns the next entire line of inputnextLine()

DescriptionMethod
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Line input example
� Given the following input data:

23   3.14 John Smith   "Hello world"
45.2 19

� The Scanner can read the following input:

23\t3.14 John Smith\t"Hello world"\n\t\t45.2  19\n
^

� input.nextLine()
23\t3.14 John Smith\t"Hello world" \n\t\t45.2  19\n

^

� input.nextLine()
23\t3.14 John Smith\t"Hello world"\n \t\t45.2  19 \n

^

� Each \n character is consumed but not returned.
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File processing question
� A program that "quotes" a text file's email message:

import java.io.*;     // for File
import java.util.*;   // for Scanner

public class QuoteMessage {
public static void main(String[] args)

throws FileNotFoundException {
Scanner input = new Scanner(new File("message.txt")) ;
while ( input.hasNextLine() ) {

String line = input.nextLine() ;
System.out.println("> " + line);

}
}

}

> Please tell the students 
> I'll be curving the grades
> downward!
> 
>    Love, Prof. Meanie

Please tell the students 
I'll be curving the grades
downward!

Love, Prof. Meanie

Example output:Example input message.txt :
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IMDb movies problem
� Consider the following Internet Movie Database (IMDb) Top-250 

data from a file imdb.txt in this format, with rankings and votes:

1 9.1 196376 The Shawshank Redemption (1994)
2 8.9 93064 The Godfather: Part II (1974)
3 8.8 81507 Casablanca (1942)

� Write a program that prompts the user for a search phrase and 
displays any movies that contain that phrase.

Search word? part

Rank    Votes   Rating  Title
3       139085  9.0     The Godfather: Part II (197 4)
40      129172  8.5     The Departed (2006)
95      20401   8.2     The Apartment (1960)
192     30587   8.0     Spartacus (1960)
4 matches.

� Is this a token-based problem, or a line-based problem?
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A good start
// Displays IMDB's Top 250 movies that match a searc h string.
import java.io.*;     // for File
import java.util.*;   // for Scanner

public class Movies {
public static void main(String[] args)

throws FileNotFoundException {
String searchWord = getWord();
Scanner input = new Scanner(new File("imdb.txt"));

while ( input.hasNextLine() ) {
// search for lines that match the search word
String line = input.nextLine() ;
if (line.indexOf(searchWord) >= 0) {

System.out.println(line);
}

}
}

// Asks the user for their search word and returns it.
public static String getWord() {

System.out.print("Search word: ");
Scanner console = new Scanner(System.in);
String searchWord = console.next();
searchWord = searchWord.toLowerCase();
System.out.println();
return searchWord;

}
}
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Flaws with our solution
� Problems with our solution:

� It is case-sensitive.

� It doesn't count the number of matches.

� The output format for each line is incorrect.

� Observations:

� We care about the line breaks (they separate movies), but we 
also want to break apart the tokens up to reformat each line.

� The best solution is a hybrid approach:

� Break the overall input into lines.

� Break each line into tokens.
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Tokenizing lines
� A Scanner can tokenize the contents of a String .

Scanner <name> = new Scanner( <String>);

� We can use String Scanner s to process each line of a file.

Scanner input = new Scanner(new File(" <file name>"));

while (input.hasNextLine()) {

String line = input.nextLine();

Scanner lineScan = new Scanner(line);

<process the tokens of this line>;

}
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Line processing example
� Example: Count the words on each line of a file.

Scanner input = new Scanner(new File("input.txt"));
while (input.hasNextLine()) {

String line = input.nextLine();
Scanner lineScan = new Scanner(line);
int count = 0;
while (lineScan.hasNext()) {

String word = lineScan.next();
count++;

}
System.out.println("Line has " + count + " words");

}

Line has 6 words

Line has 3 words

The quick brown fox jumps over

the lazy dog.

Output to console:Input file input.txt :
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IMDb revisited
� Fix our IMDB program's behavior:

� Make it case-insensitive.

� Make it count the matches.

� Make it format the output correctly as shown below.

� Break the program better into methods.

Search word? part

Rank    Votes   Title
3       139085  9.0     The Godfather: Part II (197 4)
40      129172  8.5     The Departed (2006)
95      20401   8.2     The Apartment (1960)
192     30587   8.0     Spartacus (1960)
4 matches.
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IMDb answer 1
// Displays IMDB's Top 250 movies that match a searc h string.
import java.io.*;     // for File
import java.util.*;   // for Scanner

public class Movies {
public static void main(String[] args) throws FileN otFoundException {

String searchWord = getWord();
Scanner input = new Scanner(new File("imdb.txt"));
String line = search(input, searchWord);

int matches = 0;
if (line.length() > 0) {

System.out.println("Rank\tVotes\tRating\tTitle");
while (line.length() > 0) {

matches++;
display(line, matches);
line = search(input, searchWord);

}
}

System.out.println(matches + " matches.");
}

// Asks the user for their search word and returns it.
public static String getWord() {

System.out.print("Search word: ");
Scanner console = new Scanner(System.in);
String searchWord = console.next();
searchWord = searchWord.toLowerCase();
System.out.println();
return searchWord;

}
...
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IMDb answer 2
...

// Breaks apart each line, looking for lines that m atch the search word.
public static String search(Scanner input, String se archWord) {

while (input.hasNextLine()) {
String line = input.nextLine();
String lineLC = line.toLowerCase();     // case-insensitive match
if ( lineLC .indexOf(searchWord) >= 0) {

return line;
}

}
return "";   // not found

}

// Displays the line in the proper format on the sc reen.
public static void display(String line, int matches)  {

Scanner lineScan = new Scanner(line);
int rank = lineScan.nextInt() ;
double rating = lineScan.nextDouble() ;
int votes = lineScan.nextInt() ;
String title = "";
while ( lineScan.hasNext() ) {

title += lineScan.next() + " ";    // the rest of the line
}
System.out.println(rank + "\t" + votes + "\t" + rati ng + "\t" + title);

}
}
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Graphical IMDB problem
� Turn our IMDb code into a graphical program.

� top-left 0.0 tick mark at (0, 20)
� ticks 10px tall, 50px apart

� first blue bar top/left corner at (0, 70)
� bars 50px tall
� bars 50px wide per rating point
� bars 100px apart vertically
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Mixing graphical, text output
� When solving complex file I/O problems with a mix of 

text and graphical output, attack the problem in pieces.

Do the text input/output and file I/O first:

� Display any welcome message and initial console input.

� Open the input file and print some file data.

(Perhaps print every line, the first token of each line, etc.)

� Search the input file for the proper line record(s).

Next, begin the graphical output:

� Draw any fixed items that do not depend on the file results.

� Draw the graphical output that depends on the search result.
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Graphical IMDb answer 1
// Displays IMDB's Top 250 movies that match a searc h string.
import java.awt.*;    // for Graphics
import java.io.*;     // for File
import java.util.*;   // for Scanner

public class Movies2 {
public static void main(String[] args) throws FileN otFoundException {

String searchWord = getWord();
Scanner input = new Scanner(new File("imdb.txt"));
String line = search(input, searchWord);

int matches = 0;
if (line.length() > 0) {

System.out.println("Rank\tVotes\tRating\tTitle");
Graphics g = createWindow();
while (line.length() > 0) {

matches++;
display( g, line, matches);
line = search(input, searchWord);

}
}

System.out.println(matches + " matches.");
}

// Asks the user for their search word and returns it.
public static String getWord() {

System.out.print("Search word: ");
Scanner console = new Scanner(System.in);
String searchWord = console.next();
searchWord = searchWord.toLowerCase();
System.out.println();
return searchWord;

}
...
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Graphical IMDb answer 2
...
// Breaks apart each line, looking for lines that m atch the search word.
public static String search(Scanner input, String se archWord) {

while (input.hasNextLine()) {
String line = input.nextLine();
String lineLC = line.toLowerCase();     // case-insensitive match
if (lineLC.indexOf(searchWord) >= 0) {

return line;
}

}
return "";   // not found

}

// Displays the line in the proper format on the sc reen.
public static void display( Graphics g, String line, int matches) {

Scanner lineScan = new Scanner(line);
int rank = lineScan.nextInt();
double rating = lineScan.nextDouble();
int votes = lineScan.nextInt();
String title = "";
while (lineScan.hasNext()) {

title += lineScan.next() + " ";    // the rest of the line
}
System.out.println(rank + "\t" + votes + "\t" + rati ng + "\t" + title);
drawBar(g, matches, title, rank, rating);

}

...
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Graphical IMDb answer 3
...

// Creates a drawing panel and draws all fixed grap hics.
public static Graphics createWindow() {

DrawingPanel panel = new DrawingPanel(600, 500);
Graphics g = panel.getGraphics();

for (int i = 0; i <= 10; i++) {      // draw tick marks
int x = i * 50;
g.drawLine(x, 20, x, 30);
g.drawString(i + ".0", x, 20);

}

return g;
}

// Draws one red bar representing a movie's votes a nd ranking.
public static void drawBar(Graphics g, int matches, String title,

int rank, double rating) {
int y = 70 + 100 * (matches - 1);
int w = (int) (rating * 50);
int h = 50;

g.setColor(Color.BLUE);   // draw the blue bar for that movie
g.fillRect(0, y, w, h);
g.setColor(Color.BLACK);
g.drawString("#" + rank + ": " + title, 0, y);

}
}
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Another example:Another example:

Hours WorkedHours Worked

reading: 6.2 - 6.3
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Another example
� Given a file with the following contents:

123 Susan 12.5 8.1 7.6 3.2

456 Brad 4.0 11.6 6.5 2.7 12

789 Jenn 8.0 8.0 8.0 8.0 7.5

� Consider the task of computing hours worked by each person:

Susan (ID#123) worked 31.4 hours (7.85 hours/day)
Brad (ID#456) worked 36.8 hours (7.36 hours/day)
Jenn (ID#789) worked 39.5 hours (7.9 hours/day)

� Let's try to solve this problem token-by-token ...



22Copyright 2006 by Pearson Education

A flawed solution
import java.io.*;            // for File
import java.util.*;          // for Scanner

public class HoursWorked {   // a non-working solution
public static void main(String[] args)

throws FileNotFoundException {
Scanner input = new Scanner(new File("hours.txt"));
while (input.hasNext()) {

// process one person
int id = input.nextInt();
String name = input.next();
double totalHours = 0.0;
int days = 0;
while ( input.hasNextDouble() ) {

totalHours += input.nextDouble() ;
days++;

}
System.out.println(name + " (ID#" + id + 

") worked " + totalHours + " hours (" +
(totalHours / days) + " hours/day)");

}
}

}
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The flaw
� Flawed solution's output:

Susan (ID#123) worked 487.4 hours ( 97.48 hours/day)
Exception in thread "main"
java.util.InputMismatchException

at java.util.Scanner.throwFor(Scanner.java:840)
at java.util.Scanner.next(Scanner.java:1461)
at java.util.Scanner.nextInt(Scanner.java:2091)
at java.util.Scanner.nextInt(Scanner.java:2050)
at HoursWorked.main(HoursBad.java:9)

� The inner while loop is grabbing the next person's ID.

� Observations:

� We need to process the individual tokens, but we also care 
about the line breaks (they tell us when one person is done).

� The best solution is a hybrid approach:

� Break the overall input into lines.

� Break each line into tokens.
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Complex lines
� Fix the program to compute employee hours worked:

Susan (ID#123) worked 31.4 hours (7.85 hours/day)

Brad (ID#456) worked 36.8 hours (7.36 hours/day)
Jenn (ID#789) worked 39.5 hours (7.9 hours/day)

� Modify the program so it searches for a person by ID:

� Example:

Enter an ID: 456

Brad (ID#456) worked 36.8 hours (7.36 hours/day)

� Example:

Enter an ID: 293

ID#293 not found
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Complex input answer 1
// This program searches an input file of employees ' hours worked
// for a particular employee and outputs that emplo yee's hours data.

import java.io.*;    // for File
import java.util.*;  // for Scanner

public class HoursWorked {
public static void main(String[] args) throws FileN otFoundException {

Scanner console = new Scanner(System.in);
System.out.print("Enter an ID: ");
int searchId = console.nextInt();       // e.g. 456

Scanner input = new Scanner(new File("hours.txt"));
String line = findPerson(input, searchId);
if (line.length() > 0) {

processLine(line);
} else {

System.out.println("ID#" + searchId + " was not foun d");
}

}

...
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Complex input answer 2
// Locates and returns the line of data about a par ticular person.
public static String findPerson(Scanner input, int s earchId) {

while (input.hasNextLine()) {
String line = input.nextLine();
Scanner lineScan = new Scanner(line);
int id = lineScan.nextInt();          // e.g. 456
if (id == searchId) {

return line;                      // we found them!
}

}
return "";   // not found, so return an empty line

}

// Totals the hours worked by the person and output s their info.
public static void processLine(String line) {

Scanner lineScan = new Scanner(line);
int id = lineScan.nextInt();              // e.g. 456
String name = lineScan.next();            // e.g. "Brad"
double hours = 0.0;
int days = 0;
while (lineScan.hasNextDouble()) {

hours += lineScan.nextDouble();
days++;

}

System.out.println(name + " (ID#" + id + ") worked "  + hours + " hours ("
+ (hours / days) + " hours/day)");

}
}
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Advanced File I/OAdvanced File I/O

reading: 6.4 - 6.5
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Confusion w/ nextLine
� Using nextLine in conjunction with the token-based 

methods on the same Scanner can cause odd results.
� Given the following input:

23   3.14
Joe   "Hello world"

45.2 19

� You'd think that you could read the 23 and 3.14 with calls to 
nextInt and nextDouble respectively, and then read the 
following Joe "Hello world" part with nextLine .  But:

System.out.println(input.nextInt());      // 23
System.out.println(input.nextDouble());   // 3.14
System.out.println(input.nextLine());     // 

� The nextLine call produces no output!  Why is this?
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Mixing line-based with tokens
� Here's what the Scanner does when you mix nextLine

with the token-based methods on the same Scanner :

23   3.14
Joe   "Hello world"

45.2 19

input.nextInt()                               // 23
23 \t3.14\nJoe\t"Hello world"\n\t\t45.2  19\n

^

input.nextDouble() // 3.14
23\t 3.14 \nJoe\t"Hello world"\n\t\t45.2  19\n

^

input.nextLine() // "" (empty!)
23\t3.14\nJoe\t"Hello world"\n\t\t45.2  19\n

^

input.nextLine() // "Joe\t\"Hello world\""
23\t3.14\n Joe\t"Hello world" \n\t\t45.2  19\n

^
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Line-and-token example
� Another example of the confusing behavior:

Scanner console = new Scanner(System.in);
System.out.print("Enter your age: ");
int age = console.nextInt() ;
System.out.print("Now enter your name: ");
String name = console.nextLine() ;
System.out.println(name + " is " + age + " years ol d.");

Log of execution (user input underlined):
Enter your age: 12
Now enter your name: Marty Stepp

is 12 years old.

� Why?
� User's overall input: 12\nMarty Stepp
� After nextInt(): 12 \nMarty Stepp

^
� After nextLine(): 12\nMarty Stepp

^


