
1Copyright 2006 by Pearson Education

Building Java ProgramsBuilding Java Programs

Chapter 6:
File Processing

2Copyright 2006 by Pearson Education

Lecture outline

� line-based file processing using Scanner s

� processing a file line by line

� mixing line-based and token-based file processing

� searching for a particular line record in a file

� graphically displaying data from a file

� complex file input

� mixing nextLine and token-based methods

3Copyright 2006 by Pearson Education

LineLine--based file processingbased file processing

reading: 6.3

4Copyright 2006 by Pearson Education

Line-by-line processing
� A Scanner object has the following methods:

� The Scanner 's nextLine method reads a line of input.

� It consumes from the input cursor's position to the next \n .

Scanner input = new Scanner(new File(" <file name>"));
while (input.hasNextLine()) {

String line = input.nextLine() ;

<process this line>;

}

returns true if there are any more lines of input

to read (always true for console input)

hasNextLine()

returns the next entire line of inputnextLine()

DescriptionMethod

5Copyright 2006 by Pearson Education

Line input example
� Given the following input data:

23 3.14 John Smith "Hello world"
45.2 19

� The Scanner can read the following input:

23\t3.14 John Smith\t"Hello world"\n\t\t45.2 19\n
^

� input.nextLine()
23\t3.14 John Smith\t"Hello world" \n\t\t45.2 19\n

^

� input.nextLine()
23\t3.14 John Smith\t"Hello world"\n \t\t45.2 19 \n

^

� Each \n character is consumed but not returned.

6Copyright 2006 by Pearson Education

File processing question
� A program that "quotes" a text file's email message:

import java.io.*; // for File
import java.util.*; // for Scanner

public class QuoteMessage {
public static void main(String[] args)

throws FileNotFoundException {
Scanner input = new Scanner(new File("message.txt")) ;
while (input.hasNextLine()) {

String line = input.nextLine() ;
System.out.println("> " + line);

}
}

}

> Please tell the students
> I'll be curving the grades
> downward!
>
> Love, Prof. Meanie

Please tell the students
I'll be curving the grades
downward!

Love, Prof. Meanie

Example output:Example input message.txt :

7Copyright 2006 by Pearson Education

IMDb movies problem
� Consider the following Internet Movie Database (IMDb) Top-250

data from a file imdb.txt in this format, with rankings and votes:

1 9.1 196376 The Shawshank Redemption (1994)
2 8.9 93064 The Godfather: Part II (1974)
3 8.8 81507 Casablanca (1942)

� Write a program that prompts the user for a search phrase and
displays any movies that contain that phrase.

Search word? part

Rank Votes Rating Title
3 139085 9.0 The Godfather: Part II (197 4)
40 129172 8.5 The Departed (2006)
95 20401 8.2 The Apartment (1960)
192 30587 8.0 Spartacus (1960)
4 matches.

� Is this a token-based problem, or a line-based problem?

8Copyright 2006 by Pearson Education

A good start
// Displays IMDB's Top 250 movies that match a searc h string.
import java.io.*; // for File
import java.util.*; // for Scanner

public class Movies {
public static void main(String[] args)

throws FileNotFoundException {
String searchWord = getWord();
Scanner input = new Scanner(new File("imdb.txt"));

while (input.hasNextLine()) {
// search for lines that match the search word
String line = input.nextLine() ;
if (line.indexOf(searchWord) >= 0) {

System.out.println(line);
}

}
}

// Asks the user for their search word and returns it.
public static String getWord() {

System.out.print("Search word: ");
Scanner console = new Scanner(System.in);
String searchWord = console.next();
searchWord = searchWord.toLowerCase();
System.out.println();
return searchWord;

}
}

9Copyright 2006 by Pearson Education

Flaws with our solution
� Problems with our solution:

� It is case-sensitive.

� It doesn't count the number of matches.

� The output format for each line is incorrect.

� Observations:

� We care about the line breaks (they separate movies), but we
also want to break apart the tokens up to reformat each line.

� The best solution is a hybrid approach:

� Break the overall input into lines.

� Break each line into tokens.

10Copyright 2006 by Pearson Education

Tokenizing lines
� A Scanner can tokenize the contents of a String .

Scanner <name> = new Scanner(<String>);

� We can use String Scanner s to process each line of a file.

Scanner input = new Scanner(new File(" <file name>"));

while (input.hasNextLine()) {

String line = input.nextLine();

Scanner lineScan = new Scanner(line);

<process the tokens of this line>;

}

11Copyright 2006 by Pearson Education

Line processing example
� Example: Count the words on each line of a file.

Scanner input = new Scanner(new File("input.txt"));
while (input.hasNextLine()) {

String line = input.nextLine();
Scanner lineScan = new Scanner(line);
int count = 0;
while (lineScan.hasNext()) {

String word = lineScan.next();
count++;

}
System.out.println("Line has " + count + " words");

}

Line has 6 words

Line has 3 words

The quick brown fox jumps over

the lazy dog.

Output to console:Input file input.txt :

12Copyright 2006 by Pearson Education

IMDb revisited
� Fix our IMDB program's behavior:

� Make it case-insensitive.

� Make it count the matches.

� Make it format the output correctly as shown below.

� Break the program better into methods.

Search word? part

Rank Votes Title
3 139085 9.0 The Godfather: Part II (197 4)
40 129172 8.5 The Departed (2006)
95 20401 8.2 The Apartment (1960)
192 30587 8.0 Spartacus (1960)
4 matches.

13Copyright 2006 by Pearson Education

IMDb answer 1
// Displays IMDB's Top 250 movies that match a searc h string.
import java.io.*; // for File
import java.util.*; // for Scanner

public class Movies {
public static void main(String[] args) throws FileN otFoundException {

String searchWord = getWord();
Scanner input = new Scanner(new File("imdb.txt"));
String line = search(input, searchWord);

int matches = 0;
if (line.length() > 0) {

System.out.println("Rank\tVotes\tRating\tTitle");
while (line.length() > 0) {

matches++;
display(line, matches);
line = search(input, searchWord);

}
}

System.out.println(matches + " matches.");
}

// Asks the user for their search word and returns it.
public static String getWord() {

System.out.print("Search word: ");
Scanner console = new Scanner(System.in);
String searchWord = console.next();
searchWord = searchWord.toLowerCase();
System.out.println();
return searchWord;

}
...

14Copyright 2006 by Pearson Education

IMDb answer 2
...

// Breaks apart each line, looking for lines that m atch the search word.
public static String search(Scanner input, String se archWord) {

while (input.hasNextLine()) {
String line = input.nextLine();
String lineLC = line.toLowerCase(); // case-insensitive match
if (lineLC .indexOf(searchWord) >= 0) {

return line;
}

}
return ""; // not found

}

// Displays the line in the proper format on the sc reen.
public static void display(String line, int matches) {

Scanner lineScan = new Scanner(line);
int rank = lineScan.nextInt() ;
double rating = lineScan.nextDouble() ;
int votes = lineScan.nextInt() ;
String title = "";
while (lineScan.hasNext()) {

title += lineScan.next() + " "; // the rest of the line
}
System.out.println(rank + "\t" + votes + "\t" + rati ng + "\t" + title);

}
}

15Copyright 2006 by Pearson Education

Graphical IMDB problem
� Turn our IMDb code into a graphical program.

� top-left 0.0 tick mark at (0, 20)
� ticks 10px tall, 50px apart

� first blue bar top/left corner at (0, 70)
� bars 50px tall
� bars 50px wide per rating point
� bars 100px apart vertically

16Copyright 2006 by Pearson Education

Mixing graphical, text output
� When solving complex file I/O problems with a mix of

text and graphical output, attack the problem in pieces.

Do the text input/output and file I/O first:

� Display any welcome message and initial console input.

� Open the input file and print some file data.

(Perhaps print every line, the first token of each line, etc.)

� Search the input file for the proper line record(s).

Next, begin the graphical output:

� Draw any fixed items that do not depend on the file results.

� Draw the graphical output that depends on the search result.

17Copyright 2006 by Pearson Education

Graphical IMDb answer 1
// Displays IMDB's Top 250 movies that match a searc h string.
import java.awt.*; // for Graphics
import java.io.*; // for File
import java.util.*; // for Scanner

public class Movies2 {
public static void main(String[] args) throws FileN otFoundException {

String searchWord = getWord();
Scanner input = new Scanner(new File("imdb.txt"));
String line = search(input, searchWord);

int matches = 0;
if (line.length() > 0) {

System.out.println("Rank\tVotes\tRating\tTitle");
Graphics g = createWindow();
while (line.length() > 0) {

matches++;
display(g, line, matches);
line = search(input, searchWord);

}
}

System.out.println(matches + " matches.");
}

// Asks the user for their search word and returns it.
public static String getWord() {

System.out.print("Search word: ");
Scanner console = new Scanner(System.in);
String searchWord = console.next();
searchWord = searchWord.toLowerCase();
System.out.println();
return searchWord;

}
...

18Copyright 2006 by Pearson Education

Graphical IMDb answer 2
...
// Breaks apart each line, looking for lines that m atch the search word.
public static String search(Scanner input, String se archWord) {

while (input.hasNextLine()) {
String line = input.nextLine();
String lineLC = line.toLowerCase(); // case-insensitive match
if (lineLC.indexOf(searchWord) >= 0) {

return line;
}

}
return ""; // not found

}

// Displays the line in the proper format on the sc reen.
public static void display(Graphics g, String line, int matches) {

Scanner lineScan = new Scanner(line);
int rank = lineScan.nextInt();
double rating = lineScan.nextDouble();
int votes = lineScan.nextInt();
String title = "";
while (lineScan.hasNext()) {

title += lineScan.next() + " "; // the rest of the line
}
System.out.println(rank + "\t" + votes + "\t" + rati ng + "\t" + title);
drawBar(g, matches, title, rank, rating);

}

...

19Copyright 2006 by Pearson Education

Graphical IMDb answer 3
...

// Creates a drawing panel and draws all fixed grap hics.
public static Graphics createWindow() {

DrawingPanel panel = new DrawingPanel(600, 500);
Graphics g = panel.getGraphics();

for (int i = 0; i <= 10; i++) { // draw tick marks
int x = i * 50;
g.drawLine(x, 20, x, 30);
g.drawString(i + ".0", x, 20);

}

return g;
}

// Draws one red bar representing a movie's votes a nd ranking.
public static void drawBar(Graphics g, int matches, String title,

int rank, double rating) {
int y = 70 + 100 * (matches - 1);
int w = (int) (rating * 50);
int h = 50;

g.setColor(Color.BLUE); // draw the blue bar for that movie
g.fillRect(0, y, w, h);
g.setColor(Color.BLACK);
g.drawString("#" + rank + ": " + title, 0, y);

}
}

20Copyright 2006 by Pearson Education

Another example:Another example:

Hours WorkedHours Worked

reading: 6.2 - 6.3

21Copyright 2006 by Pearson Education

Another example
� Given a file with the following contents:

123 Susan 12.5 8.1 7.6 3.2

456 Brad 4.0 11.6 6.5 2.7 12

789 Jenn 8.0 8.0 8.0 8.0 7.5

� Consider the task of computing hours worked by each person:

Susan (ID#123) worked 31.4 hours (7.85 hours/day)
Brad (ID#456) worked 36.8 hours (7.36 hours/day)
Jenn (ID#789) worked 39.5 hours (7.9 hours/day)

� Let's try to solve this problem token-by-token ...

22Copyright 2006 by Pearson Education

A flawed solution
import java.io.*; // for File
import java.util.*; // for Scanner

public class HoursWorked { // a non-working solution
public static void main(String[] args)

throws FileNotFoundException {
Scanner input = new Scanner(new File("hours.txt"));
while (input.hasNext()) {

// process one person
int id = input.nextInt();
String name = input.next();
double totalHours = 0.0;
int days = 0;
while (input.hasNextDouble()) {

totalHours += input.nextDouble() ;
days++;

}
System.out.println(name + " (ID#" + id +

") worked " + totalHours + " hours (" +
(totalHours / days) + " hours/day)");

}
}

}

23Copyright 2006 by Pearson Education

The flaw
� Flawed solution's output:

Susan (ID#123) worked 487.4 hours (97.48 hours/day)
Exception in thread "main"
java.util.InputMismatchException

at java.util.Scanner.throwFor(Scanner.java:840)
at java.util.Scanner.next(Scanner.java:1461)
at java.util.Scanner.nextInt(Scanner.java:2091)
at java.util.Scanner.nextInt(Scanner.java:2050)
at HoursWorked.main(HoursBad.java:9)

� The inner while loop is grabbing the next person's ID.

� Observations:

� We need to process the individual tokens, but we also care
about the line breaks (they tell us when one person is done).

� The best solution is a hybrid approach:

� Break the overall input into lines.

� Break each line into tokens.

24Copyright 2006 by Pearson Education

Complex lines
� Fix the program to compute employee hours worked:

Susan (ID#123) worked 31.4 hours (7.85 hours/day)

Brad (ID#456) worked 36.8 hours (7.36 hours/day)
Jenn (ID#789) worked 39.5 hours (7.9 hours/day)

� Modify the program so it searches for a person by ID:

� Example:

Enter an ID: 456

Brad (ID#456) worked 36.8 hours (7.36 hours/day)

� Example:

Enter an ID: 293

ID#293 not found

25Copyright 2006 by Pearson Education

Complex input answer 1
// This program searches an input file of employees ' hours worked
// for a particular employee and outputs that emplo yee's hours data.

import java.io.*; // for File
import java.util.*; // for Scanner

public class HoursWorked {
public static void main(String[] args) throws FileN otFoundException {

Scanner console = new Scanner(System.in);
System.out.print("Enter an ID: ");
int searchId = console.nextInt(); // e.g. 456

Scanner input = new Scanner(new File("hours.txt"));
String line = findPerson(input, searchId);
if (line.length() > 0) {

processLine(line);
} else {

System.out.println("ID#" + searchId + " was not foun d");
}

}

...

26Copyright 2006 by Pearson Education

Complex input answer 2
// Locates and returns the line of data about a par ticular person.
public static String findPerson(Scanner input, int s earchId) {

while (input.hasNextLine()) {
String line = input.nextLine();
Scanner lineScan = new Scanner(line);
int id = lineScan.nextInt(); // e.g. 456
if (id == searchId) {

return line; // we found them!
}

}
return ""; // not found, so return an empty line

}

// Totals the hours worked by the person and output s their info.
public static void processLine(String line) {

Scanner lineScan = new Scanner(line);
int id = lineScan.nextInt(); // e.g. 456
String name = lineScan.next(); // e.g. "Brad"
double hours = 0.0;
int days = 0;
while (lineScan.hasNextDouble()) {

hours += lineScan.nextDouble();
days++;

}

System.out.println(name + " (ID#" + id + ") worked " + hours + " hours ("
+ (hours / days) + " hours/day)");

}
}

27Copyright 2006 by Pearson Education

Advanced File I/OAdvanced File I/O

reading: 6.4 - 6.5

28Copyright 2006 by Pearson Education

Confusion w/ nextLine
� Using nextLine in conjunction with the token-based

methods on the same Scanner can cause odd results.
� Given the following input:

23 3.14
Joe "Hello world"

45.2 19

� You'd think that you could read the 23 and 3.14 with calls to
nextInt and nextDouble respectively, and then read the
following Joe "Hello world" part with nextLine . But:

System.out.println(input.nextInt()); // 23
System.out.println(input.nextDouble()); // 3.14
System.out.println(input.nextLine()); //

� The nextLine call produces no output! Why is this?

29Copyright 2006 by Pearson Education

Mixing line-based with tokens
� Here's what the Scanner does when you mix nextLine

with the token-based methods on the same Scanner :

23 3.14
Joe "Hello world"

45.2 19

input.nextInt() // 23
23 \t3.14\nJoe\t"Hello world"\n\t\t45.2 19\n

^

input.nextDouble() // 3.14
23\t 3.14 \nJoe\t"Hello world"\n\t\t45.2 19\n

^

input.nextLine() // "" (empty!)
23\t3.14\nJoe\t"Hello world"\n\t\t45.2 19\n

^

input.nextLine() // "Joe\t\"Hello world\""
23\t3.14\n Joe\t"Hello world" \n\t\t45.2 19\n

^

30Copyright 2006 by Pearson Education

Line-and-token example
� Another example of the confusing behavior:

Scanner console = new Scanner(System.in);
System.out.print("Enter your age: ");
int age = console.nextInt() ;
System.out.print("Now enter your name: ");
String name = console.nextLine() ;
System.out.println(name + " is " + age + " years ol d.");

Log of execution (user input underlined):
Enter your age: 12
Now enter your name: Marty Stepp

is 12 years old.

� Why?
� User's overall input: 12\nMarty Stepp
� After nextInt(): 12 \nMarty Stepp

^
� After nextLine(): 12\nMarty Stepp

^

